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Random energy model in nonextensive statistical mechanics

D. B. Saakiah? and E. E. Vogél
Yyerevan Physics Institute, Alikhanian Brothers St. 2, Yerevan 375036, Armenia
2Departamento de Ciencias $icas, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
(Received 4 October 2000; published 30 August 2001

Free energy for random energy model is obtained for different values of paragjuséned in nonextensive
statistical mechanics. System is found either in paramagnetic or spin-glass phases depending on thg.value of
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Nowadays the random energy modBEM) [1] is one of It has been found that this approach leads to three phases:
the most widely used models of statistical mechanics. Beene SG and two PM phasg3].
sides the direct use in spin glasses the model has a wide Tsallis suggested an alternative statistics mechanics to the
range of applications in diverse areas of modern theoreticalsual Boltzmann-Gibbs statistical mechaniés In his ap-
physics and biophysics. proach instead of the usual Boltzmann definition of entropy
The most important results of Shannon information theoryfor I' equivalent-probability realizations given by
are readily derived by means of the REM approach putting
them in a physical languag@-5]. Let us briefly review the S=InT, (7
two equivalent representations of the REM. The first one can
be formulated in real space fof Ising spins, where interac- Tsallis used the following expression:
tions involve p spins at a time on a mean field lattice.
Namely, rt-a-1

=g ®

H=- > i, S (o

1=ig<iy-<ip=N 1T P which is equivalent to Boltzmann’s in the lintdt— 1. In this
approach we have a partition functi@ghover M levels
The number of different choices fgras well as couplings is

given by K=N!/(N—p)!p!. Scaling must be introduced M

such that the total variance is proportionalNp Z=21 d(1-B(1-q)E)Y-9), 9)
1=

P N
K<Ji1--~ip>_§' (2 where

The second formulation of REM takes into account energy $(x)=0, x=0,

configurations. There art1=2N configurations, each one

with its energyE; . Such distributions are independent so it d(x)=1, x=0. (10

follows a factorization like ) )
More recently Tsalliset al. have reinterpreted the role of

p(E1,E5)=p(E1)p(Ey), (3) B in the expression abovi], but this does not have any
implication in the subsequent analysis where it can be con-
where each one follows a usual normal distribution sidered as a mere mathematical parameter.

The usual role of IiZ is now played by the expression

1 p[ E?2
p(E)= exg — —|.

VN N

At high temperatures the system is paramagri&id) and at

low temperatures it is frozen in a spin-gld&G) phase. Let After this short review let us construct the REM within

us consider a quenched average for free energy as given bisallis picture. In this case two versions of the REMicro-
scopic and configuration spgcare not equivalent, when
couplings in Hamiltonian given by Ed1) have a distribu-

(In Z('B)>E<|n EI exp(—,BEi)>. ®) tionpwitﬂ infinite variance[i?\stead zf tkCI(e one represented in

Eqg. (4)]. We take couplingg;, .. iy with the Fourier spectrum

When one considensreal copies of any system, the average

4 zl-a_1

= (1

can be expressed as p(K)=exp(—cl|k|*). (12
(Z"= > exp(— BE;) " (6) Let us choose two configuratiorsg ,s? with corresponding
i ' ' energies, ,E, and define energy levels distribution. Then,
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At the limit p—c one has thas; - --si s - - -sizp behave as

+1 random variablegl] leading to the expression

1 joo joo
P(kl,k2)=4_7_r2f_ - dkldeeXF{_Elkl_Ezkz

Mc
- 7(|k1_k2|”+|k1+ ko|#)

where M=N!/p!(N—p)!. We see that a factorization is
only possible for the case of a normal distribution with
=2 and thus the model with Hamiltonian given by Ed)
does not obey the property given by inequali®) any

longer.

To get some results in Tsallis statistical mechanics let u
consider the second version of REM, beginning from 4.
and working in configuration space. However, instead of the
exponential distribution as in Eq4), we consider polyno-

mial distributions, which have longer tails. Then

oo

c

13

: 14

PHYSICAL REVIEW E 64 032101

(0= ] e oL,

k=1-q. (18
We are interested in a regim&t)~1—e. Then for large
values ofM,

P(t)=e Me (19

The point is to find different asymptotic expressionsfr).

The simplest one can be found considering expansion of the
exponent in Eq(10),

©

dx (1+kBx) P (1)

(1+x3)7?
=exp| - Mtf
—1/Bk

Another asymptotic expression can be found from the con-
dition that large—t (1 +kBx)* in the exponent of Eq10)
cuts the integration region. So we have

fﬂ0~1—tf

— 1Bk

d (1+kBx) ¢ .

X—
(1+x2)7"

(20

1/8kt*

fZ(t)%ffx

oo

c
dx———
(1+x3)72

c
dX————
L/ﬁktk (1+x2)7?

C
I y—1ik(y—1)
=1- =7 (kg O V()

=ex%-—Mj;§I(kB)7]T“7”J. (21)

Using Eq.(16) for F=((Z*)—1)/k we have in the paramag-
Detic phase20) at y>1/k+1:

= (1+kpx)tk
[ v
—ugk (1+x3)72

This result is in agreement with the expected phase at high
temperatures. The SG phase is found when the condijtion

k
1 1
_ T nkek _ -
F kM C ] K (22)

p(E)= m,c_l= f_wm- (19  <1k+1 is satisfied according to E€R1), leading to
To calculate(Z¥) let us use the representation 1 l/('yl)r< - %1+ 1) 1
Lk F:_ﬂMuw—n«__J Ny 72
Zk:J t de 2 (16) k y—1 I'(=k) k
o kD= (23)

To averagee™ 4

(e™H)=w(t)=f(t)M,

where

via distribution(12) we need to calculate

17

It follows that a transition between a PM phase to a SG
phase occurs at

(24)
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which is a connection between PM phase ordered motion anelxtensive statistical mechanics yielded two possible phases
SG one-chaotic motiotvery unstable vacuumThe point of ~ for the REM, for any system characterized by a particular
view (choice ofq) can cause a transition from one phase toform of energy distribution and value of Tsallis parameter
the other. In the ordinary REM, phase transitions are drived! any case, the system chooses one of these two phases that
via 8. In the present picture there is one phase at all value{1€" remains the same for all temperatures. For any distribu-
of B, but different phases arise from different choices fortion of energies there is some resonant Tsallis paranpter
distribution as well as the value of the Tsallis parameter WhlcthaIIO\r/wvs one to approach the border between the two
We have introduced two nonequivalent versions of the05SIP'€ Phases.
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mechanics: one is obtained by means op-apin Hamil-  Fundacim Andes(Chile) Grant No. C-13413/1 for financial
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