
PHYSICAL REVIEW E, VOLUME 64, 032101
Random energy model in nonextensive statistical mechanics
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Free energy for random energy model is obtained for different values of parameterq defined in nonextensive
statistical mechanics. System is found either in paramagnetic or spin-glass phases depending on the value ofq.
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Nowadays the random energy model~REM! @1# is one of
the most widely used models of statistical mechanics.
sides the direct use in spin glasses the model has a
range of applications in diverse areas of modern theore
physics and biophysics.

The most important results of Shannon information the
are readily derived by means of the REM approach putt
them in a physical language@2–5#. Let us briefly review the
two equivalent representations of the REM. The first one
be formulated in real space forN Ising spins, where interac
tions involve p spins at a time on a mean field lattic
Namely,

H52 (
1< i 1, i 2•••, i p<N

j i 1••• i p
si 1

•••si p
. ~1!

The number of different choices forp as well as couplings is
given by K5N!/(N2p)! p!. Scaling must be introduced
such that the total variance is proportional toN,

K^ j i 1••• i p

2 &5
N

2
. ~2!

The second formulation of REM takes into account ene
configurations. There areM52N configurations, each on
with its energyEi . Such distributions are independent so
follows a factorization like

r~E1 ,E2!5r~E1!r~E2!, ~3!

where each one follows a usual normal distribution

r~E!5
1

ANp
expF2

E2

N
G . ~4!

At high temperatures the system is paramagnetic~PM! and at
low temperatures it is frozen in a spin-glass~SG! phase. Let
us consider a quenched average for free energy as give

^ ln Z~b!&[K ln (
i

exp~2bEi !L . ~5!

When one considersn real copies of any system, the avera
can be expressed as

^Zn&[K F(
i

exp~2bEi !GnL . ~6!
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It has been found that this approach leads to three pha
one SG and two PM phases@2#.

Tsallis suggested an alternative statistics mechanics to
usual Boltzmann-Gibbs statistical mechanics@6#. In his ap-
proach instead of the usual Boltzmann definition of entro
for G equivalent-probability realizations given by

S5 ln G, ~7!

Tsallis used the following expression:

S5
G12q21

12q
, ~8!

which is equivalent to Boltzmann’s in the limitq→1. In this
approach we have a partition functionZ over M levels

Z5(
i 51

M

f„12b~12q!Ei…
1/(12q), ~9!

where

f~x!50, x<0,

f~x!51, x>0. ~10!

More recently Tsalliset al. have reinterpreted the role o
b in the expression above@7#, but this does not have an
implication in the subsequent analysis where it can be c
sidered as a mere mathematical parameter.

The usual role of lnZ is now played by the expression

Z12q21

12q
. ~11!

After this short review let us construct the REM with
Tsallis picture. In this case two versions of the REM~micro-
scopic and configuration space! are not equivalent, when
couplings in Hamiltonian given by Eq.~1! have a distribu-
tion with infinite variance@instead of the one represented
Eq. ~4!#. We take couplingsj i 1••• i p

with the Fourier spectrum

r~k!5exp~2cukum!. ~12!

Let us choose two configurationssi
1 ,si

2 with corresponding
energiesE1 ,E2 and define energy levels distribution. Then
©2001 The American Physical Society01-1
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r~k1 ,k2!5K dS E12 (
1< i 1, i 2•••, i p<N

j i 1••• i p
si 1

1
•••si p

1 D
3dS E22 (

1< i 1, i 2•••, i p<N
j i 1••• i p

si 1
2
•••si p

2 D L
j

5
1

4p2E2 i`

i` E
2 i`

i`

dk1dk2 expF2E1k12E2k2

1k1 (
1< i 1, i 2•••, i p<N

j i 1••• i p
si 1

1
•••si p

1

1k2 (
1< i 1, i 2•••, i p<N

j i 1••• i p
si 1

2
•••si p

2 G L
j

5
1

4p2E2 i`

i` E
2 i`

i`

dk1dk2 expF2E1k12E2k2

1 (
1< i 1, i 2•••, i p<N

j i 1••• i p
~k1si 1

1
•••si p

1

1k2si 1
2
•••si p

2 !G L
j

. ~13!

At the limit p→` one has thatsi 1
1
•••si p

1 si 1
2
•••si p

2 behave as

61 random variables@1# leading to the expression

r~k1 ,k2!5
1

4p2E2`

i` E
2`

i`

dk1dk2 expF2E1k12E2k2

2
Mc

2
~ uk12k2um1uk11k2um!G , ~14!

where M5N!/ p!(N2p)!. We see that a factorization i
only possible for the case of a normal distribution withm
52 and thus the model with Hamiltonian given by Eq.~1!
does not obey the property given by inequality~2! any
longer.

To get some results in Tsallis statistical mechanics let
consider the second version of REM, beginning from Eq.~3!
and working in configuration space. However, instead of
exponential distribution as in Eq.~4!, we consider polyno-
mial distributions, which have longer tails. Then

r~E!5
c

~11E2!g/2
,c215E

2`

` 1

~11E2!g/2
. ~15!

To calculatê Zk& let us use the representation

Zk5E
0

` t2k

kG~2k!
de2tZ. ~16!

To averagee2tZ via distribution~12! we need to calculate

^e2tZ&5C~ t !5 f ~ t !M, ~17!

where
03210
s

e

f ~ t !5E
2`

` c

~11x2!g/2
exp$2tf~11kbx!1/k%,

k512q. ~18!

We are interested in a regimef (t);12e. Then for large
values ofM,

C~ t !5e2Me. ~19!

The point is to find different asymptotic expressions forf (t).
The simplest one can be found considering expansion of
exponent in Eq.~10!,

f 1~ t !'12tE
21/bk

`

dx
c

~11x2!g/2
~11kbx!1/kC1~ t !

5expH 2MtE
21/bk

`

dx
c

~11x2!g/2
~11kbx!1/kJ .

~20!

Another asymptotic expression can be found from the c
dition that large2tf(11kbx)1/k in the exponent of Eq.~10!
cuts the integration region. So we have

f 2~ t !'E
2`

1/bktk

dx
c

~11x2!g/2

'E
1/bktk

`

dx
c

~11x2!g/2

512
c

g21
~kb!g21tk(g21)C2~ t !

5expH 2M
c

g21
~kb!g21tk(g21)J . ~21!

Using Eq.~16! for F5(^Zk&21)/k we have in the paramag
netic phase~20! at g.1/k11:

F5
1

k
MkckH E

21/bk

`

dx
~11kbx!1/k

~11x2!g/2 J k

2
1

k
. ~22!

This result is in agreement with the expected phase at h
temperatures. The SG phase is found when the conditiog
,1/k11 is satisfied according to Eq.~21!, leading to

F5
1

k
bM1/(g21)S c

g21D 1/(g21) GS 2
1

g21
11D

G~2k!
2

1

k
.

~23!

It follows that a transition between a PM phase to a S
phase occurs at

g5
1

k
11. ~24!
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which is a connection between PM phase ordered motion
SG one-chaotic motion~very unstable vacuum!. The point of
view ~choice ofq) can cause a transition from one phase
the other. In the ordinary REM, phase transitions are dri
via b. In the present picture there is one phase at all val
of b, but different phases arise from different choices
distribution as well as the value of the Tsallis parameterq.

We have introduced two nonequivalent versions of
REM beyond the usual formulation of Boltzmann statistic
mechanics: one is obtained by means of ap-spin Hamil-
tonian one, while the other~solved in this work! is defined in
configuration space. The application of our approach to n
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extensive statistical mechanics yielded two possible pha
for the REM, for any system characterized by a particu
form of energy distribution and value of Tsallis parameterq.
In any case, the system chooses one of these two phase
then remains the same for all temperatures. For any distr
tion of energies there is some resonant Tsallis parameteq,
which allows one to approach the border between the
possible phases.
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